Abstract

It is well established that DNA replication and ultraviolet-induced DNA repair synthesis in mammalian cells are aphidicolin-sensitive and thus are mediated by one or both of the aphidicolin-sensitive DNA polymerases, alpha and/or delta. Recently, it has been shown that DNA polymerase delta is much more sensitive to inhibition by the nucleotide analogue 2',3'-dideoxythymidine 5'-triphosphate (ddTTP) than DNA polymerase alpha but is less sensitive than DNA polymerase beta [Wahl, A. F., Crute, J. J., Sabatino, R. D., Bodner, J. B., Marraccino, R. L., Harwell, L. W., Lord, E. M., & Bambara, R. A. (1986) Biochemistry 25, 7821-7827]. We find that DNA replication and ultraviolet-induced DNA repair synthesis in permeable human fibroblasts are also more sensitive to inhibition by ddTTP than polymerase alpha and less sensitive than polymerase beta. The Ki for ddTTP of replication is about 40 microM and that of repair synthesis is about 25 microM. These are both much less than the Ki of polymerase alpha (which is greater than 200 microM) but greater than the Ki of polymerase beta (which is less than 2 microM). These data suggest that DNA polymerase delta participates in DNA replication and ultraviolet-induced DNA repair synthesis in human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call