Abstract

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) affects glycemia due to reduced gluconeogenesis; when combined with a reduction in feed intake, this culminates in decreased body weight. We investigated the effects of steady-state levels of TCDD (loading dose rates of 0.0125, 0.05, 0.2, 0.8, and 3.2 microg/kg) or approximately isoeffective dose rates of 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HxCDD) (loading dose rates of 0.3125, 1.25, 5, 20, and 80 microg/kg) on body weight, phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression and activity, and circulating concentrations of insulin, glucose, and insulin-like growth factor-I (IGF-I), and expression of hepatic phosphorylated AMP kinase-alpha (p-AMPK) protein in female Sprague-Dawley rats (approximately 250 gm) at 2, 4, 8, 16, 32, 64, and 128 days after commencement of treatment. At the 0.05 and 1.25 microg/kg loading dose rates of TCDD and HxCDD, respectively, there was a slight increase in body weight as compared to controls, whereas at the 3.2 and 80 microg/kg loading dose rates of TCDD and HxCDD, respectively, body weight of the rats was significantly decreased. TCDD and HxCDD also inhibited PEPCK activity in a dose-dependent fashion, as demonstrated by reductions in PEPCK mRNA and protein. Serum IGF-I levels of rats treated initially with 3.2 microg/kg TCDD or 80 microg/kg HxCDD started to decline at day 4 and decreased to about 40% of levels seen in controls after day 16, remaining low for the duration of the study. Eight days after initial dosing, hepatic p-AMPK protein was increased in a dose-dependent manner with higher doses of TCDD and HxCDD. There was no effect with any dose of TCDD or HxCDD on circulating insulin or glucose levels. In conclusion, doses of TCDD or HxCDD that began to inhibit body weight in female rats also started to inhibit PEPCK, inhibited IGF-I, while at the same time inducing p-AMPK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.