Abstract
Harvesting triplet excitons of heavy atom-free purely organic chromophores under aerated conditions is challenging due to the quenching of long-lived triplet states by molecular oxygen and vibrational dissipation. Herein, we show a supramolecular approach of triplet harvesting via mitigating quenching pathways of a triplet harvester. Specifically, we used a host-guest system based on 2,3 : 6,7-naphthalene bis(dicarboximide)-derived cyclophane (NBICy) and carbazole derivative (EtCz). Complexation studies and single-crystal X-ray analysis showed the formation of a rigid host-guest complex (K≈104 M-1 in CCl4), resulting in triplet-exciton stabilization under aerated conditions via mitigating vibrational interference and oxygen quenching. Photophysical studies elucidate the delayed fluorescence emission from the charge-transfer state (1CT) with a quantum yield (QY) of 6-8 % under ambient conditions which increased up to 36 % in an inert atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.