Abstract
A series of linear 2,5-tetraphenylsilole-vinylene-type polymers were successfully synthesized for the first time. The tetraphenylsilole moieties were linked at their 2,5-positions through a vinylene bridge with p-dialkoxybenzenes to obtain polymer PSVB and with 3,6-carbazole to obtain polymer PSVC. For comparison, 2,5-tetraphenylsilole-ethyne-type polymer PSEB was also synthesized, in which the vinylene bridge of PSVB was replaced with an ethyne bridge. Very interestingly, the bridging group (vinylene or ethyne) had a significant effect on the photophysical properties of the corresponding polymers. The fluorescence peak of PSEB at 504 nm in solution originated from the emission of its silole moieties, whereas PSVB and PSVC emitted yellow light and no blueish-green emission from the silole moieties was observed, thus demonstrating that the emissions of PSVB and PSVC were due to their polymer backbones. More importantly, the 2,5-tetraphenylsilole-ethyne polymer exhibited a pronounced aggregation-enhanced emission (AEE) effect but the 2,5-tetraphenylsilole-vinylene polymer was AEE-inactive. Moreover, both AEE-active 2,5-tetraphenylsilole-ethyne polymer and AEE-inactive 2,5-tetraphenylsilole-vinylene polymers were successfully applied as fluorescent chemosensors for the detection of explosive compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.