Abstract
Single-walled carbon nanotubes (SWCNTs) have been widely applied in biomedical fields such as drug delivery, biosensing, bioimaging, and tissue engineering. Understanding their reactivity with biomolecules is important for these applications. We describe here a photoinduced cycloaddition reaction between enones and SWCNTs. By creating covalent and tunable sp3 defects in the sp2 carbon lattice of SWCNTs through [2π + 2π] photocycloaddition, a bright red-shifted photoluminescence was gradually generated. The photocycloaddition functionalization was demonstrated with various organic molecules bearing an enone functional group, including biologically important oxygenated lipid metabolites. The mechanism of this reaction was studied empirically and using computational methods. Density functional theory calculations were employed to elucidate the identity of the reaction product and understand the origin of different substrate reactivities. The results of this study can enable engineering of the optical and electronic properties of semiconducting SWCNTs and provide understanding into their interactions with the lipid biocorona.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.