Abstract

A bis-hydroxo-bridged diiron(III) complex and a bis-mu-oxo-bis-mu-hydroxo-bridged tetrairon(III) complex are isolated from the reaction of 2,6-bis((N,N'-bis-(2-picolyl)amino)methyl)-4-tert-butylphenol (Hbpbp) with iron perchlorate in acidic and neutral solutions respectively. The X-ray structure of the dinuclear complex [{(Hbpbp)Fe([mu-OH)}(2)](ClO(4))(4).2C(3)H(6)O (1.2C3H6O) shows that only one of the metal-binding cavities of each ligand is occupied by an iron(III) atom and two [Fe(Hbpbp)]3+ units are linked together by two hydroxo bridging groups to form a [Fe(III)-(mu-OH)](2) rhomb structure with Fe...Fe = 3.109(1)A. The non-coordinated tertiary amine of Hbpbp is protonated. Magnetic susceptibility measurements show a well-behaved weak antiferromagnetic coupling between the two Fe(III) atoms, J= -8 cm(-1). The tetranuclear complex [(bpbp)(2)Fe(4)(mu-O)(2)(mu-OH)(2)](ClO(4))(4)(2) was isolated as two different solvates .4CH(3)OH and .6H(2)O with markedly different crystal morphologies at pH ca. 6. Complex .4CH(3)OH forms red cubic crystals and .6H(2)O forms green crystalline platelets. The Fe(4)O(6) core of shows an adamantane-like structure: The six bridging oxygen atoms are provided by the two phenolato groups of the two bpbp(-) ligands, two bridging oxo groups and two bridging hydroxo groups. The hydroxo and oxo ligands could be distinguished on the basis of Fe-O bond lengths of the two different octahedral iron sites: Fe-mu-OH, 1.953(5), 2.013(5)A and Fe-mu-O, 1.803(5), 1.802(5)A. The difference in ligand environment is too small for allowing Mossbauer spectroscopy to distinguish between the two crystallographically independent Fe sites. The best fit to the magnetic susceptibility of .4CH(3)OH was achieved by using three coupling constants J(Fe-OPh-Fe)= 2.6 cm(-1), J(Fe-OH-Fe)=-0.9 cm(-1), J(Fe-O-Fe)=-101 cm(-1) and iron(III) single ion ZFS (|D|= 0.15 cm(-1)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.