Abstract
2,2-Bis(4-hydroxyphenyl)propane (bisphenol A BPA) is a substance in a form of a solid crystals or flakes with a mild phenolic odor. BPA is commonly used in the production of epoxide, polycarbonate or polysulfone resins, glues, breaks fluids or as a flame retardants and fungicides. Exposure to BPA can cause irritation of skin, BPA can also act as a nefro or hepatotoxic factor and upper respiratory tract or mucous membranes of the eye. BPA has a negative effects on human fertility. The aim of this study was to develop and validate a sensitive method for determining BPA concentrations in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of Standard No. PN-EN 482. The study was performed using a liquid chromatograph with spectrophotometric (UV-VIS) and spectrofluorimetric (FLD) detection. All chromatographic analyses were performed with Supelcosil LC 18 (150 × 3 mm) analytical column, which was eluted with mixture of acetonitrile and water (1:1). This method was based on collecting BPA on glass fiber filter, extracting with acetonitrile, and chromatographic determining resulted solution with HPLC technique. The average extraction efficiency of BPA from filters was 90%. The method was linear (r = 0.9996) within the investigated working range 0.125–5 mg/m3 for a 720-L air sample. The calculated limit of detection (LOD) and the limit of quantification (LOQ) was to 0.02 μg/ml (UV-VIS) and 0.013 μg/ml (FLD), and 0.068 μg/ml (UV-VIS) and 0.042 μg/ml (FLD), respectively. The analytical method described in this paper enables specific and selective determination of BPA in workplace air in presence of other compounds. The method is precise, accurate and it meets the criteria for measuring chemical agents listed in Standard No. PN-EN 482+A1:2016-01. The method can be used for assessing occupational exposure to BPA and associated risk to workers’ health. The developed method of determining BPA has been recorded as an analytical procedure (see appendix).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.