Abstract

AbstractMid‐infrared supercontinuum (mid‐IR SC) sources in the 2–20 µm molecular fingerprint region are in high demand for a wide range of applications including optical coherence tomography, remote sensing, molecular spectroscopy, and hyperspectral imaging. Herein, mid‐IR SC generation is investigated in a cascaded silica‐ZBLAN‐chalcogenide fiber system directly pumped with a commercially available pulsed fiber laser operating in the telecommunications window at 1.55 µm. This fiber‐based system is shown to generate a flat broadband mid‐IR SC covering the entire range from 2 to 10 µm with several tens of mW of output power. This technique paves the way for low cost, practical, and robust broadband SC sources in the mid‐IR without the requirement of mid‐infrared pump sources or Thulium‐doped fiber amplifiers. A fully realistic numerical model used to simulate the nonlinear pulse propagation through the cascaded fiber system is also described and the numerical results are used to discuss the physical processes underlying the spectral broadening in the cascaded system. Finally, recommendations are provided for optimizing the current cascaded system based on the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.