arXiv: Solar and Stellar Astrophysics | VOL. 587
Read

1RXS J180408.9-342058: an ultra compact X-ray binary candidate with a transient jet

Publication Date Jan 19, 2016

Abstract

We present a detailed NIR/optical/UV study of the transient low mass X-ray binary 1RXS J180408.9-342058 performed during its 2015 outburst, aimed at determining the nature of its companion star. We obtained three optical spectra at the 2.1 m San Pedro Martir Observatory telescope (Mexico). We performed optical and NIR photometric observations with both the REM telescope and the New Technology Telescope (NTT) in La Silla. We obtained optical and UV observations from the Swift archive. Finally, we performed optical polarimetry of the source by using the EFOSC2 instrument mounted on the NTT. The optical spectrum of the source is almost featureless since the hydrogen and He I emissions lines, typically observed in LMXBs, are not detected. Similarly, carbon and oxygen lines are neither observed. We marginally detect the He II 4686 AA emission line, suggesting the presence of helium in the accretion disc. No significant optical polarisation level was observed. The lack of hydrogen and He I emission lines in the spectrum implies that the companion is likely not a main sequence star. Driven by the tentative detection of the He II 4686 AA emission line, we suggest that the system could harbour a helium white dwarf. If this is the case, 1RXS J180408.9-342058 would be an ultra-compact X-ray binary. By combining an estimate of the mass accretion rate together with evolutionary tracks for a He white dwarf, we obtain a tentative orbital period of ~ 40 min. On the other hand, we also built the NIR-optical-UV spectral energy distribution (S...

Concepts

Transient Jet New Technology Telescope Spectral Energy Distribution Soft X-ray State Hard X-ray State REM Telescope Emission Line Technology Telescope Main Sequence Oxygen Lines

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 21, 2022 to Nov 27, 2022

R DiscoveryNov 28, 2022
R DiscoveryArticles Included:  2

No potential conflict of interest was reported by the authors. The conception and design of the study, acquisition of data, analysis and interpretatio...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.