Abstract

Our previous work demonstrated that the sterol response element binding proteins (SREBP)-1 and SREBP-2, which are the key regulators of storage lipid and cholesterol metabolism respectively, are highly expressed in Schwann cells of adult peripheral nerves. In order to evaluate the role of Schwann cell SREBPs in myelination and functioning of peripheral nerves we have determined their expression during development, after fasting and refeeding, and in a rodent model of diabetes. Our results show that SREBP-1c and SREBP-2, unlike SREBP-1a, are the major forms of SREBPs present in peripheral nerves. The expression profile of SREBP-2 follows the expression of genes involved in cholesterol biosynthesis, while SREBP-1c is co-expressed with genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurial compartment of peripheral nerves depends on nutritional status and is disturbed in type 1 diabetes. In line with this, insulin elevates the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type 1 diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of diabetic peripheral neuropathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call