Abstract

The negative impact of heat stress (HS) on the production performances in pig faming is of particular concern. Novel diagnostic methods are needed to predict the robustness of pigs to HS. Our study aimed to assess the reliability of blood metabolome to predict the sensitivity to chronic HS of 10 F1 (Large White × Creole) sire families (SF) reared in temperate (TEMP) and in tropical (TROP) regions (n = 56±5 offsprings/region/SF). Live body weight (BW) and rectal temperature (RT) were recorded at 23 weeks of age. Average daily feed intake (AFDI) and average daily gain were calculated from weeks 11 to 23 of age, together with feed conversion ratio. Plasma blood metabolome profiles were obtained by Nuclear Magnetic Resonance spectroscopy (1HNMR) from blood samples collected at week 23 in TEMP. The sensitivity to hot climatic conditions of each SF was estimated by computing a composite index of sensitivity (Isens) derived from a linear combination of t statistics applied to familial BW, ADFI and RT in TEMP and TROP climates. A model of prediction of sensitivity was established with sparse Partial Least Square Discriminant Analysis (sPLS-DA) between the two most robust SF (n = 102) and the two most sensitive ones (n = 121) using individual metabolomic profiles measured in TEMP. The sPLS-DA selected 29 buckets that enabled 78% of prediction accuracy by cross-validation. On the basis of this training, we predicted the proportion of sensitive pigs within the 6 remaining families (n = 337). This proportion was defined as the predicted membership of families to the sensitive category. The positive correlation between this proportion and Isens (r = 0.97, P < 0.01) suggests that plasma metabolome can be used to predict the sensitivity of pigs to hot climate.

Highlights

  • The economic losses in pig industry due to heat stress (HS) are important both for tropical countries where the average ambient temperature frequently exceeds 25 ̊C and for temperate countries exposed to summer heat waves

  • rectal temperature (RT) increased significantly in TROP compared to TEMP climate

  • The increase of RT in TROP environment was dependent on the sire family (SF)

Read more

Summary

Objectives

The objectives of the present study are: 1/ to propose a strategy to evaluate HS sensitivity in ten pig sire families (SF) using performance of descendants raised either in temperate (TEMP) or in tropical (TROP) environments, and 2/ to build a predictive model of pig sensitivity to HS based on plasma metabolomic signature, using the sparse partial least square discriminant analysis statistical approach. The main objective of this study was to provide possible biomarkers for a future diagnostic tool based on the fitness evaluation of sires in two contrasted climatic environments (TEMP vs TROP) using plasma 1HRMN metabolic information obtained from blood samples collected in TEMP. The main objective of our study was to propose an effective predictive tool to assess the environmental sensitivity (i.e., Isens) with a combination of blood metabolites obtained from a. The aim of the current article was not to dissect the biological mechanisms of thermal tolerance, the highlighted metabolomic predictors in our study showed interesting interconnections within the metabolic network

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call