Abstract

In order to provide new insight into the molecular mechanism of perforating trauma-induced cataract formation in an 8-week-old ddY mouse lens, we performed an in situ investigation into changes in the water-protein and/or protein-protein interactions by using 500 MHz 1H-NMR spectroscopy, and into structural alterations in lens proteins by using Raman spectroscopy. Cross-relaxation times of water protons in the perforated opaque lens were considerably shorter than those in the intact transparent lens, whereas there was no significant difference in water content, suggesting a drastic change in water-protein and protein-protein interactions in the perforated lens. In addition, there was no significant difference in the intensity ratios of several key Raman bands between intact and perforated lenses, indicating that no significant local and overall conformational changes in lens protein itself occur in the perforated lens. The present 1H-NMR and Raman results lead us to the conclusion that changes leading to lens opacification in the perforating trauma-induced cataract appear to involve the rapid formation of immobile large lens protein aggregates without formation of intra- and intermolecular disulfide linkages, and rapid increase in a fraction of bound water associated with large protein aggregates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call