Abstract

A complete description of the T 1-NMRD profiles and the ESR lineshape of Gd(III) complexes ( S = 7/2) was presented using second-order perturbation theory (GSBM) by Zhou et al. [J. Magn. Reson. 167 (2004) 147]. This report compares the GSBM with the stochastic Liouville approach (SLA) to determine the validity of the closed analytical expressions of NMRD and the ESR lineshape functions. Both approaches give the same results at high fields while a very small divergence is observed for X- and W-band ESR lineshapes when the magnitude of the perturbation term times the correlation time approaches the limit of the perturbation regime, Δ ZFS τ f ≈ 0.1. There was a clear discrepancy between the theoretical GSBM X-band spectrum and the recorded ESR spectrum of the Gd(III) MS-325 + HSA complex. This is probably due to a slow-motion effect caused by a slow modulation of the ZFS interaction. The characteristic correlation time of this slow modulation is in the range of 150 ps, which therefore cannot be due to the reorientational motion of the whole MS-325 + HSA complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call