Abstract

We investigated the kinetics of the oxidative chemical copolymerization of 2-methoxyaniline (OMA) and 3-aminobenzenesulfonic acid (MA) by monitoring monomer depletion with 1H NMR spectroscopy. We adapted a semiempirical kinetic model, previously used for OMA homopolymerization, for the consumption of both OMA and MA monomers with a large difference in their reactivities. The OMA polymerization rate and end conversion showed a similar dependence on the reaction conditions, as described in the first part of this series, for its homopolymerization. Generally, the MA comonomer had an inhibition effect on the OMA polymerization rate. However, an increase in the initial MA concentration resulted in an increased OMA initiation rate. Because of the higher reactivity of OMA compared with that of MA, the OMA conversion began before the MA conversion, and both the initiation and propagation rates were higher than those for MA. The molar ratios of the converted monomers (MA/OMA) were always significantly lower than the corresponding MA/OMA feed fractions. They depended on the reaction conditions used for the copolymerization. In particular, higher oxidant or MA concentrations, higher temperatures, and a 1 M DCl concentration favored MA conversion, that is, its insertion into the copolymer. The MA end conversion was much smaller than that of OMA, only up to 23%; for a low oxidant concentration (oxidant/monomer-deficient molar ratio), it was only 6%. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2482–2493, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.