Abstract

The green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet.

Highlights

  • It is well known that non autochthonous species can cause severe changes in marine ecosystem such as altering availability or quality of nutrients and other resources, changing habitat structure and affecting genetic flow or reproductive performance [1,2,3]

  • Native to the southwestern coast of Australia, C. cylindracea is present in most parts of the Mediterranean Sea, where it has invaded many Marine Protected Areas (MPAs) [6,7]

  • In order to understand the alga impact on seabream plasma metabolomic profiles, 41 blood samples of D. sargus fished in two periods (June and October) in invaded areas of Apulia

Read more

Summary

Introduction

It is well known that non autochthonous species can cause severe changes in marine ecosystem such as altering availability or quality of nutrients and other resources, changing habitat structure and affecting genetic flow or reproductive performance [1,2,3]. Cylindracea (Sonder), due to the remarkable change induced in the invaded area. The analysis of fish gut contents carried out in several areas invaded by C. cylindracea, has showed that the invasive algae has been included into the diet of the white seabream Diplodus sargus, becoming its most abundant food resource [8,9,10]. The switch from a diet based on a variety of animal and plant sources to one mostly centered on the invasive alga, has been shown to influence organoleptic properties and nutrition quality of this fish resource, which is relevant for the market, with a reduction of polyunsaturated fatty acids of the n-3 and n-6 series in muscles of white seabream due to the C. cylindracea-based diet [9]. The nutritional value, taste and flavor of the fish fillets strongly depend on their fat content, fatty acid composition and muscle amino acids, which are all clearly influenced by the animal dietary history [10]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.