Abstract

The molecular structure of the L-arginine derivative, N(alpha)-benzoyl-L-argininate ethyl ester chloride (BAEEH(+).Cl(-)), was characterized by combining quantum chemical methods and (1)H NMR spectroscopy. A conformational search on the potential energy surfaces of the three lowest-energy tautomers of BAEEH(+) [A: R-N(+)H=(NH(2))(2); B: R-NH-C(=NH)N(+)H(3); C: R-N(+)H(2)-C(=NH)NH(2); R = C(6)H(5)C(=O)NH-CH(COOCH(2)CH(3))CH(2)CH(2)CH(2)-] was carried out using the semiempirical PM3 method. The lowest-energy conformations obtained using this method were then optimized at the DFT(B3LYP)/6-31++G(d,p) level of theory. For all tautomers, it was found that all low-energy conformers present folded structures, in which a H-bond interaction between the guanidinium group and the amide carbonyl oxygen atom appears to be the most relevant stabilizing factor. (1)H NMR spectra of BAEEH(+).Cl(-) in DMF-D(7) were acquired in the temperature range [-55 to 75 degrees C], providing information about the rotational motions in the guanidinium group and showing that the tautomeric form of BAEEH(+) that exists in solution is tautomer A. The interpretation of the experimental findings was supported by (1)H NMR chemical shifts obtained theoretically at the DFT(B3LYP)/6-31++G(d,p) level of approximation, using both the polarized continuum model and a BAEEH(+)-water complex model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.