Abstract

In this study, 1H NMR is used to investigate properties of sodium dodecyl sulfate (SDS), tetradecyl trimethyl ammonium bromide (TTAB), and dodecyl trimethyl ammonium bromide (DTAB) adsorbed on kaolin by NMR T 1 and T 2 measurements of the water proton resonance. The results show that adsorbed surfactants form a barrier between sample water and the paramagnetic species present on the clay surface, thus significantly increasing the proton T 1 values of water. This effect is attributed to the amount of adsorbed surfactants and the arrangement of the surfactant aggregates. The total surface area covered by the cationic (DTAB and TTAB) and anionic (SDS) surfactants could be estimated from the water T 1 data and found to correspond to the fractions of negatively and positively charged surface area, respectively. For selected samples, the amount of paramagnetic species on the clay surface was reduced by treatment with hydrofluoric (HF) acid. For these samples, T 1 and T 2 measurements were taken in the temperature range 278–338 K, revealing detailed information on molecular mobility and nuclear exchange for the sample water that is related to surfactant behavior both on the surface and in the aqueous phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call