Abstract
BackgroundThe increased prevalence of hepatocellular carcinoma (HCC) in diabetic patients has focused on the need to characterize the role of altered metabolites in liver carcinogenesis. In this study, together with the serum biochemistry and histopathological observation, 1H nuclear magnetic resonance (1H-NMR)-based metabolomics was carried out to study the effect of asarone and metformin in diabetic HCC rats. Intraperitoneal administration of streptozotocin (STZ; 55 mg/kg b.w.) was used to induce diabetes in male Wistar rats. Further, 2 weeks later, after confirmation of diabetes, another group received diethylnitrosamine (DEN; 200 mg/kg b.w.) to simulate the diabetic HCC condition. The combined dose of α-and β-asarone (50 µg/kg b.w. in the ratio of 1:1) and metformin HCl (250 mg/kg b.w.) treatment was orally given to the diabetic HCC rats for 18 weeks. The serum samples were subjected to 1H-NMR-based metabolomics analysis to explore the metabolite changes at the end of the study.Results1H-NMR study quantitatively distinguished the metabolites, such as pyruvate, lactate, creatine, acetate, glutamine, valine, and alanine, which varied between the diabetic HCC and normal rats. Furthermore, compared to the diabetic HCC group, the administration of asarone and metformin resulted in a substantial change in metabolite levels. Histopathological examination indicated that treatment attenuates the magnitude of the toxic effect of STZ + DEN.ConclusionsThe aberrant glucose, lipid, and amino acid metabolisms were associated with developing hepatocarcinogenesis in rats during the diabetic condition. Treatment with asarone and metformin attenuated the metabolic changes due to STZ + DEN-induced diabetic HCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.