Abstract

Paralytic shellfish poisoning is a global issue that would benefit from additional screening methods and rapid testing capacities. In this study, we applied 1H NMR spectroscopy-based metabolomics to identify biomarkers of Paralytic Shellfish Toxin (PST) exposure. We characterized the metabolic phenotypes of field-collected Alaskan mussels Mytilus trossulus across a wide range of bioaccumulated PST levels, from 0 to 1590 μg/100 g. A between-level grouping emerged for high (740–1590 μg/100 g) compared to low/non-detect (0–3.91 μg/100 g) PST levels. High levels of PST contamination in mussels were consistent with alterations to energy and amino acid metabolism, and disturbances in osmoregulation. This research demonstrates the effectiveness of 1H NMR-based metabolomics in elucidating the biological effects of paralytic shellfish toxin on the health of wild mussel populations, spatial variation, and identifies a metabolic signature indicative of PST contamination in Mytilus trossulus for potential use in a PSP biomarker panel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call