Abstract

Anticancer treatment results in temporary or permanent toxicity considered as changes in normal tissues and/or involved regions. The net effect is mirrored in morphological, functional and molecular disturbances—thus in a systemic response of the human body. To date, specific NMR biomarkers of radiation therapy toxicity in head and neck squamous cell carcinoma (HNSCC) patients are scarce or even missing. We aimed to investigate molecular processes reflecting acute radiation sequelae (ARS) in HNSCC patients using NMR-based metabolomics of blood serum. 45 patients with HNSCC were treated with radiotherapy (RT) or chemoradiotherapy (CHRT). Blood samples were collected within a week after RT/CHRT completion. Patients were divided into two classes (of high and low ARS) on the basis of the highest individual ARS value observed during the treatment. 1H NMR spectra of serum samples were acquired on a Bruker 400.13 MHz spectrometer at 310 K and analyzed using principal component analysis and orthogonal partial least squares discriminant analysis. Additional statistical analyses were performed on quantified metabolites. 1D projections of the J-resolved NMR spectra seem to be of the great potential in the quest for the HNSCC treatment toxicity biomarker. The metabolic features characteristic for high ARS are the increased signals of N-acetyl-glycoprotein and acetate, as well as decrease of choline and the metabolites involved in energy metabolism: branched chain amino acids (BCAAs), alanine, creatinine and carnitine. Furthermore, we observed significant correlations between N-acetyl-glycoprotein and clinical markers of inflammation as well as acetate and a percentage-weight-loss during the treatment. CRP was also negatively correlated with alanine and BCAAs. NMR-based metabolomics provides relevant biomarkers of RT/CHRT toxicity (ARS) in HNSCC patients. The results indicate at least three concomitant processes related to high ARS: inflammation, altered energy metabolism and disturbed membrane metabolism, and indicate an exciting potential of J-resolved NMR spectroscopy combined with multivariate projection techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call