Abstract

Hydrogen species in both SiO2 and Rh/SiO2catalysts pretreated in different atmospheres (H2, O2, helium or air) at different temperatures (773 or 973 K) were investigated by means of1H MAS NMR. In SiO2 and O2-pretreated catalysts, a series of downfield signals at ∼7.0, 3.8–4.0, 2.0 and 1.5–1.0 were detected. The first two signals can be attributed to strongly adsorbed and physisorbed water and the others to terminal silanol (SiOH) and SiOH under the screening of oxygen vacancies in SiO2lattice, respectively. Besides the above signals, both upfield signal at ∼−110 and downfield signals at 3.0 and 0.0 were also detected in H2-pretreated catalyst, respectively. The upfield signal at ∼−110 originated from the dissociative adsorption of H2 over rhodium and was found to consist of both the contributions of reversible and irreversible hydrogen. There also probably existed another dissociatively adsorbed hydrogen over rhodium, which was known to be β hydrogen and in a unique form of “delocalized hydrogen”. It was presumed that the β hydrogen had an upfield shift of ca. −20–−50, though its1H NMR signals, which, having been masked by the spinning sidebands of Si-OH, failed to be directly detected out. The downfield signal at 3.0 was assigned to spillover hydrogen weakly bound by the bridge oxygen of SiO2. Another downfield signal at 0.0 was assigned to hydrogen held in the oxygen vacancies of SiO2 (Si-H species), suffering from the screening of trapped electrons. Both the spillover hydrogen and the Si-H resulted from the migration of the reversible hydrogen and the β hydrogen from rhodium to SiO2 in the close vicinity. It was proved that the above migration of hydrogen was preferred to occur at higher temperature than at lower temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call