Abstract

Oriented sample solid-state NMR is a complementary approach to protein structure determination with the distinct advantage that it can be applied to supramolecular assemblies, such as viruses and membrane proteins, under near-native conditions, which generally include high levels of hydration as found in living systems. Thus, in order to perform 1H detected versions of multi-dimensional experiments water suppression techniques must be integrated into the pulse sequences. For example, 1H-windowed detection of 1H-15N dipolar couplings enable multi-dimensional NMR experiments to be performed. Here we show that the addition of a solvent suppression pulse during the z-filter interval greatly improves the sensitivity of the experiments by suppressing the 1H signals from water present. This is demonstrated here with a crystal sample submerged in water and then extended to proteins. The combination of solvent-suppressed 1H detected PISEMO and the use of a strip shield-solenoid coil probe configuration provides a two-fold sensitivity enhancement in both the crystal sample and Pf1 coat protein sample compared to the 15N direct detection method. Here we also examine protein NMR line-widths and sensitivity enhancements in the context of window detected separated local field experiments for protein samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call