Abstract

Rotational echo double resonance (REDOR) is a highly successful method for heteronuclear distance determination in biological solid-state NMR, and 1H detection methods have emerged in recent years as a powerful approach to improving sensitivity and resolution for small sample quantities by utilizing fast magic-angle spinning (>30 kHz) and deuteration strategies. In theory, involving 1H as one of the spins for measuring REDOR effects can greatly increase the distance measurement range, but few experiments of this type have been reported. Here we introduce a pulse sequence that combines frequency-selective REDOR (FSR) with 1H detection. We demonstrate this method with applications to samples of uniformly 13C,15N,2H-labeled alanine and uniformly 13C,2H,15N-labeled GB1 protein, back-exchanged with 30% H2O and 70% D2O, employing a variety of frequency-selective 13C pulses to highlight unique spectral features. The resulting, robust REDOR effects provide (1) tools for resonance assignment, (2) restraints of secondary structure, (3) probes of tertiary structure, and (4) approaches to determine the preferred orientation of aromatic rings in the protein core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.