Abstract

Niobium oxide hydrate is a promising material for various heterogeneous catalytic processes due to its strong acidity and stability in aqueous medium. While different synthesis conditions may lead to various particle morphologies, the effect of morphology of Nb2O5·nH2O particles on their acidic properties is not fully understood yet. In this paper, we have successfully synthesized and characterized nanodisperse niobium oxide hydrate. Using infrared (IR) spectroscopy, we demonstrated that the sample exhibits strong Bronsted acidity close in strength to sulfuric acid. Furthermore, solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with ab initio calculations gave additional insight into the nature of strong acidic sites and proved to be a useful tool for identification of acidic sites in Nb2O5·nH2O systems. Thus, we have shown that it is not necessary to follow difficult high-temperature solid-state processes or processes with ammonia, which often contaminates the material, to synthesize highly acidic nanodisperse Nb2O5·nH2O.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call