Abstract
Complementary experiments with NMR 1H and 13C spectroscopy, proton diffusometry, and relaxometry have been used to investigate the sodium N-lauroyl sarcosinate (SLS) micellar systems in aqueous solutions. The effects of concentration and temperature on molecular conformation, micellar structure, and molecular kinetic in the SLS solutions were studied. Each NMR spectral line of the SLS spectrum splits but there are two variants of the effect: (i) for the head-groups this effect exists in the whole concentration range and it is due to the presence of two conformational isomers, (ii) for the hydrophobic part the splitting of resonance lines is observed in certain concentration range and caused by the existence of two different realizations of micellar aggregates. The concentration of the cis-conformers is a bit higher in a “monomer” (diluted) solution as well as the trans-conformers are more favorable in the micellar state. The relation of cis- and trans-conformer fractions is nearly independent of temperature. The transient concentration range, where different types of micellar sub-structures co-exist, is discovered. Moreover, the SLS solutions are characterized by four kinetic processes with different time scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.