Abstract

The periplasmic chaperone SurA in Gram-negative bacteria plays a central role in the biogenesis of integral outer membrane proteins and is critical to the maintenance of bacterial membrane integrity. SurA contains a core chaperone module comprising the N- and C-terminal domains, along with two peptidyl-prolyl isomerase (PPIase) domains. The chaperone activity of SurA has been demonstrated to rely on the core module, whereas recent works suggested that the PPIase domains may regulate the chaperone activity through large conformational rearrangements. Herein, we report the resonance assignments of 1H, 13C and 15N atoms of the second PPIase domain of Escherichia coli SurA, which provide valuable information for further studies of the structure, dynamics and interactions of this chaperone using NMR techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call