Abstract

Nine new and three earlier known 4-halogen (Cl and Br) substituted pyridine N-oxides have been prepared and their 1H, 13C and 15N NMR chemical shifts assigned based on PFG 1H, X (X= 13C and 15N) HMQC and HMBC experiments as well as the comparison with our earlier results for substituted pyridine N-oxide derivatives. The 15N resonances of the pyridine nitrogen are 27–40 ppm more shielded in 4-halo-2-alkylamino-6-methyl-5-nitropyridine N-oxide than in parent 4-halopyridine N-oxide. According to quantum chemical ab initio HF/6-311G** calculations the amino tautomer of 4-chloro-2-methylamino-6-methyl-5-nitropyridine N-oxide is more stable than its imino form. Using B3LYP/6-311G** optimized structures both 13C and 15N shifts were calculated by density functional B3LYP/6-311G** CSGT methods for the amino and imino tautomers as well as for the dimeric structure for 4-chloro-2-methylamino-6-methyl-5-nitropyridine N-oxide. The 15N NMR and DFT calculations suggest the prevailing of the dimeric amino form for one congener, which is further supported by ESI-TOF MS data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.