Abstract

During the maturation of the HIV-1 particle, the Gag polyprotein is cleaved by the viral protease into several proteins: matrix (MA), capsid (CA), spacer peptide 1 (SP1), nucleocapsid (NC), spacer peptide 2 (SP2) and p6. After cleavage, these proteins rearrange to form infectious viral particles. The final cleavage by the protease occurs between CA and SP1 and is the limiting step for the maturation of the particle. The CA-SP1 junction is the target of HIV-1 maturation inhibitors. CA is responsible for the formation of the viral capsid which protects the viral RNA inside. The SP1 domain is essential for viral assembly and infectivity, it is flexible and in helix-coil equilibrium. The presence of NC allows the SP1 domain to be less dynamic. The perturbation of the natural coil-helix equilibrium to helix interferes with protease cleavage and leads to non-completion of viral maturation. In this work, two mutations, W316A and M317A, that abolish the oligomerization of CA were introduced into the protein. The HIV-1 CACTDW316A, M317A-SP1-NC which contains the C-terminal monomeric mutant of CA, SP1 and NC was produced to study the mechanism of action of HIV-1 maturation inhibitors. Here we report the backbone assignment of the protein CACTDW316A, M317A-SP1-NC. These results will be useful to study the interaction between HIV-1 Gag and HIV-1 maturation inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call