Abstract

We present one-dimensional (1D) stability analysis of a recently proposed method to filter and control localized states of the Bose–Einstein condensate (BEC), based on novel trapping techniques that allow one to conceive methods to select a particular BEC shape by controlling and manipulating the external potential well in the three-dimensional (3D) Gross–Pitaevskii equation (GPE). Within the framework of this method, under suitable conditions, the GPE can be exactly decomposed into a pair of coupled equations: a transverse two-dimensional (2D) linear Schrodinger equation and a one-dimensional (1D) longitudinal nonlinear Schrodinger equation (NLSE) with, in a general case, a time-dependent nonlinear coupling coefficient. We review the general idea how to filter and control localized solutions of the GPE. Then, the 1D longitudinal NLSE is numerically solved with suitable non-ideal controlling potentials that differ from the ideal one so as to introduce relatively small errors in the designed spatial profile. It is shown that a BEC with an asymmetric initial position in the confining potential exhibits breather-like oscillations in the longitudinal direction but, nevertheless, the BEC state remains confined within the potential well for a long time. In particular, while the condensate remains essentially stable, preserving its longitudinal soliton-like shape, only a small part is lost into “radiation”.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.