Abstract

Spintronic offers a solution by exploiting spin instead of electron charge since spin current propagation can occur in principle without dissipation. One of the applications involve within this project for storage media is heat-assisted magnetic recording (HAMR). The objective of this study is to simulate the behavior of thermal gradient to generate a pure spin current using an ultrafast femtosecond (fs) laser in a nano-sized multilayered structure of (Al2O3/Ni81Fe19 (Py)/Cu/Y3Fe5O12 (YIG)/Gd3Ga5O12 (GGG)) at room temperature. A ferromagnetic/spacer/magnetic insulator nano-sized multilayered is the proposed structure for this study. Electron spin, directed by the external applied magnetic field, is transferred via the spacer to the magnetic insulator, leading to the generation of a spin-wave within the last layer. The ultrafast laser generates a spark of spin diffusion to get spin current. The thermal behavior within the trilayer simulated using COMSOL Multiphysics (v 5.5) is presented and supported by the theoretical model. Simulation results showed the effect of thickness and time on the generated spin current. Moreover, the thickness of the permalloy layer plays an essential role in generating a high-temperature gradient within a magnetic insulator to generate a spin current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.