Abstract

Turbocharging technique is more and more widely employed on compression ignition and spark ignition internal combustion engines, as well, to improve performance and reduce total displacement. Experimental studies, developed on dedicated test facilities, can supply a lot of information to optimize the engine-turbocharger matching, especially if tests can be extended to the typical engine operating conditions (unsteady flow). A specialized components test rig (particularly suited to study automotive turbochargers) has been operating since several years at the University of Genoa. The test facility allows to develop studies under steady or unsteady flow conditions both on single components and subassemblies of engine intake and exhaust circuit.In the paper the results of an experimental campaign developed on a turbocharger waste-gated turbine for gasoline engine application are presented. Preliminarily, the measurement of the turbine steady flow performance map is carried out. In a second step the same component is tested under unsteady flow conditions. Instantaneous inlet and outlet static pressure, mass flow rate and turbocharger rotational speed are measured, together with average inlet and outlet temperatures.A numerical procedure, recently developed at the University of Naples, is then utilized to predict the steady turbine performance map, following a 1D approach. The model geometrically schematizes the component basing on few linear and angular dimensions directly measured on the hardware. Then, the 1D steady flow equations are solved within the stationary and rotating channels constituting the device. All the main flow losses are properly taken into account in the model. The procedure is able to provide the sole “wheel-map” and the overall turbine map. After a tuning, the overall turbine map is compared with the experimental one, showing a very good agreement.Moreover, in order to improve the accuracy of a 1D engine simulation model, the classical map-based approach is suitably corrected with a sequence of pipes that schematizes each component of the device (inlet/outlet ducts, volute and wheel) included upstream and downstream the turbine to account for the wave propagation and accumulation phenomena inside the machine. In this case, the previously computed “wheel-map” is utilized. The turbine pipes dimensions, are automatically provided by the geometrical module of the proposed procedure to correctly reproduce the device volume and the flow path length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call