Abstract
The transformation of nanophotonic sensors from laboratory-based demonstrations to a portable system to ensure widespread applicability in everyday life requires their integration with detectors for direct electrical read out. As complementary metal oxide semiconductor (CMOS) technology has revolutionized the electronics industry, the integration of nanophotonic structures with CMOS technology will also transform the sensing market. However, nanophotonic sensors have to fulfill certain requirements for their integration with CMOS detectors, such as operation in the visible wavelength range, operation in normal incidence configuration, use of CMOS compatible materials, and capability to give large optical intensity change due to resonance wavelength shift. In this paper, we have designed and developed one-dimensional silicon nitride grating structures that satisfy all these conditions simultaneously. The gratings can achieve 1 and 6 nm linewidths for the transverse-electric (TE) and transverse-magnetic (TM) polarizations, respectively, with 90% resonance depth. The experimental linewidth is 8 nm with 55% resonance depth, which is limited by the detector resolution. The experimental sensitivity of the device is 160 nm/refractive index unit (RIU), which translates to a very high intensity sensitivity of 1700%/RIU, which would enable sensing of very small changes in refractive index when integrated with a detector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Photonics Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.