Abstract

The study of heat exchangers with both the hot and cold fluid sides driven by buoyancy forces is an area of considerable interest due to their inherent passivity and non-existence of moving parts. The current study aims to study such heat exchange devices employing the basic Coupled Natural Circulation Loop (CNCL) systems. A one dimensional (1-D) Fourier series based semi-analytical model of the basic CNCL system is proposed. A 3-D CFD validation is performed to validate the developed 1-D model. The non-dimensional numbers such as Grashof number, Fourier number, Stanton number and Reynolds number, which determine the system behavior are identified and a detailed parametric study is performed. Both vertical and horizontal CNCL systems are considered along with the parallel and counter flow configurations. The heater-cooler location greatly influences the behavior of CNCL system. The vertical CNCL always exhibits counter flow configuration whereas the horizontal CNCL system may exhibit parallel or counter flow arrangement depending on the heater-cooler location and initial flow conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.