Abstract

There is very limited repertoire of organic ambipolar semiconductors to date. Electron donor-acceptor alternative stacking is a unique and important binary motif for 1D mixed-stack cocrystals, opening up possibilities for the development of organic ambipolar semiconductors. Herein, four 1D mixed-stack cocrystals using N,N'-bis(perfluorobutyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDICNF) as the acceptor and anthracene, pyrene, perylene, and meso-diphenyl tetrathia[22]annulene[2,1,2,1] (DPTTA) as the donors are achieved in a stoichiometric ratio (D:A=1:1) through solution or vapor processed methods. Their packing structures, energy levels, charge transfer interactions, coassembling behaviors, and molecular orientations are systematically investigated by single-crystal X-ray analysis, absorption spectra, fluorescence quenching, Job's curve plot, and polarized photoluminescence measurements with the help of theoretical calculations. The donor-acceptor alternative stacking direction coincides with the long axis for all the four cocrystals. The field-effect transistors based on Pyrene-PDICNF show the electron mobility up to 0.19cm2 V-1 s-1 , which is the highest value among perylene diimide-based cocrystals. Moreover, DPTTA-PDICNF cocrystals possess well-balanced electron and hole mobility with 1.7×10-2 and 2.0×10-2 cm2 V-1 s-1 respectively due to both hole and electron strong superexchange interactions, shedding light on the design of 1D mixed-stack cocrystals with excellent ambipolar transport behaviors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.