Abstract
One-dimensional nanowires have emerged as compelling ideal materials due to their characteristic structure, properties, and applications in nanodevices. Herein, based on experimental vdW-chain bulk crystals, a series of one-dimensional (1D) XVYVIZVII (X = As, Sb, Bi; Y = S, Se, Te; Z = Cl, Br, I) ternary nanowires are theoretically investigated. Such exfoliated 1D nanowires possess excellent stability and moderate band gaps (1.76-3.16 eV). The calculated electron mobilities were found to reach a magnitude of 102 cm2 V-1 s-1 and even up to 322.95 cm2 V-1 s-1 for 1D BiSeI nanowires, which are much larger than those of the previously reported 1D materials. Furthermore, the appropriate band edge alignments and considerable optical absorption endow 1D XVYVIZVII nanowires with prospective photocatalytic properties for water splitting. Notably, AsSI and AsSeI nanowires possess a unique non-centrosymmetric structure and exhibit promising 1D ferroelectricity. Large spontaneous polarization values, Ps, of 11.31 × 10-10 and 6.92 × 10-10 C m-1 are obtained for 1D AsSI and AsSeI nanowires, respectively, and such 1D ferroelectricity can be regulated by intra-chain strains. Our calculations not only broaden the family of 1D materials but also reveal their great potential applications in electronic, optoelectronic, and ferroelectric devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.