Abstract
The de Saint-Venant equation (SVE) and advection–diffusion equation (ADE) are commonly employed to solve solute transport problems in surface water. In this work, we propose a mesh-free method based on the physics-informed neural network (PINN) to solve the one dimensional (1-D) SVE, ADE, and the coupled SVE and ADE (SVE-ADE) under various initial and boundary conditions. The PINN model extends the architecture of deep neural networks (DNNs) with implementation of loss function, which are additionally subject to constraints imposed by the physical laws of SVE and ADE, along with their initial and boundary conditions. In such a manner, PINNs can be quickly steered to the true solution while obeying the physical laws. The results of PINN model are compared with the analytical and/or numerical solutions under various conditions to investigate its accuracy and efficiency in solving the SVE, ADE, and SVE-ADE. Our results indicate PINN can accurately simulate the shock wave morphology and avoid numerical dissipation in unsteady flow condition. The PINN method outweighed traditional numerical methods in several aspects, including its ability to function with small amounts of data, no grid discretization, and random selection of sampling points, etc. Additionally, the PINN method is also suitable for solving inverse problems with sparse and noisy data. With 1% noise and 2000 initial and boundary condition points (Nu), the errors of the estimated flow rate (v) and diffusion coefficient (D) are 0.003% and 0.105%, respectively, which indicate the accuracy and robustness of the proposed method. Our results indicate the capability and robustness of the proposed PINN methodology for solving multi-physics problems, irrespective of the presence of sparse and noisy data in the training dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.