Abstract

In almost all cellular phenomena and life activities, transmembrane exchange of signals and metabolites is indispensable, and heavily dependent on high selectivity of membrane pores and channels. The involved principles of natural selectivity are widely inspired and adopted for future membrane design, but often limited by the geometry of those artificial channels. Herein, a smectic liquid crystal polymeric (SmP) membrane embedded with tubular cut‐through pillar[5]arene dimers (P5Ds) by self‐assembly is first constructed. The physical confinement effect of inner subnanosized P5D cavity enables SmP membrane to behave with 1D continuous hydrogen sulfide ion (HS−) flow and ultrahigh physical selectivity for HS−. The simulated calculations and corresponding energy analyses show that it is essentially attributed to the size of ion–water cluster, not its own size. It is anticipated to provide a highly precise platform for separation and detection of human endogenous hydrogen sulfide as representative biomarker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call