Abstract

AbstractDefects in perovskite are key factors in limiting the photovoltaic performance and stability of perovskite solar cells (PSCs). Generally, choline halide (ChX) can effectively passivate defects by binding with charged point defects of perovskite. However, we verified that ChI can react with CsPbI3 to form a novel crystal phase of one‐dimensional (1D) ChPbI3, which constructs 1D/3D heterostructure with 3D CsPbI3, passivating the defects of CsPbI3 more effectively and then resulting in significantly improved photoluminescence lifetime from 20.2 ns to 49.4 ns. Moreover, the outstanding chemical inertness of 1D ChPbI3 and the repair of undesired δ‐CsPbI3 deficiency during its formation process can significantly enhance the stability of CsPbI3 film. Benefiting from 1D/3D heterostructure, CsPbI3 carbon‐based PSCs (C‐PSCs) delivered a champion efficiency of 18.05 % and a new certified record of 17.8 % in hole transport material (HTM)‐free inorganic C‐PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.