Abstract

The micellization process of sodium 8-phenyloctanoate in a deuterated aqueous solution was studied, using 1H NMR spectroscopy and two-dimensional (2D) nuclear Overhauser enhancement spectroscopy (NOESY). 1H NMR spectra, acquired for the sodium 8-phenyloctanoate before and after the critical micelle concentration (CMC) value, showed that large chemical-shift changes were observed for both the aromatic proton peaks and the peaks for the methylene protons near the terminal phenyl group. The plots for the methylene protons near the headgroup do not show these large chemical-shift changes. These observations support the view that the terminal phenyl ring of the surfactant is primarily located in the micellar interior. The 2D NOESY experiments show significant cross-peaks, between the phenyl protons and the methylene protons of the surfactant, that substantiate the conclusions on those drawn from NMR aromatic solute induced shift (ASIS) experiments on the same and similar systems. All these observations are consistent with the Gruen model of the micelle and previous NMR NOESY experiments for other surfactant systems.Key words: surfactants, micelles, NMR, NOESY.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call