Abstract

AbstractCopper sulfide is a material with immense potential for applications in photovoltaics. Particularly, copper sulfide 1-D nanostructures (i.e. nanowires, nanorods) with well-defined morphologies may enable new types of applications or may enhance the performance of existing photoelectric devices with quantum confinement effects. In this work, we report the synthesis of copper sulfide nanorods by simple, yet very effective template assisted electrochemical deposition. Before synthesizing 1-D copper sulfide nanorods, a detailed study was conducted on electrodeposited 2-D copper sulfide films to ascertain the right parameters for electrodeposition including; electrolyte composition, temperature, deposition potential and membrane type. Excellent structural properties of these resultant nanorods make them desirable for applications in the future nano-opto-electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.