Abstract

Based on first-principles calculations, we propose van der Waals (vdW) heterojunctions composed of one-dimensional carbon nanotubes (CNTs) and two-dimensional GeSe. Our calculations show that (n,0)CNT/GeSe (n = 5–11) heterojunctions are stable through weak vdW interactions. Among these heterojunctions, (n,0)CNT/GeSe (n = 5–7) exhibit metallic properties, while (n,0)CNT/GeSe (n = 8–11) have a small bandgap, lower than 0.8 eV. The absorption coefficient of (n,0)CNT/GeSe (n = 8–11) in the ultraviolet and infrared regions is around 105 cm−1. Specifically, we found that (11,0)CNT/GeSe exhibits type-II band alignment and has a high photoelectric conversion efficiency of 17.29%, which suggests prospective applications in photoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.