Abstract
In this research, we develop a robot system that can find and pick up a specific object from a pile of objects with a grasp planning including sweeping motion thereby decreasing a necessary number of operations. We use local visual features for recognition and pose estimation of a target object to cope with partial occlusions. Pose estimation of unknown objects are also necessary for handling them. We obtain point cloud data by an RGB-D camera (KINECT) mounted on the robot head, and extract object surfaces by Euclidean clustering, plane detection, and normal estimation. The robot adaptively chooses grasp or sweep actions depending on the placement of the target objects and others. We implemented the proposed method on a dual-arm robot and applied it to the task of find a target object in a cluttered container. We confirmed that introducing sweep motions can effectively reduce the time to achieve the task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.