Abstract

The induction of apoptosis in leukemic cells by dexamethasone is well known, but the mechanism of this type of cell death and of dexamethasone resistance by some variants is still poorly understood. Apoptotic cell death is preceded by many changes in cellular properties, such as glucose metabolism, cell size, cell density, and others. In this study, 19F-NMR has been used to characterize changes in cell membrane potential and intracellular accessible volume during dexamethasone induced apoptosis. One dex-sensitive (CEM-C7) and three dex-resistant variants (CEM-C1, CEM-ICR27, and CEM-4R4) were examined. We have observed separate intracellular and extracellular resonances for trifluoroacetate and trifluoroacetamide added to suspended leukemic cells. From the equilibrium distribution of these fluoro-compounds between intra and extracellular spaces, the changes in membrane potential and intracellular accessible volume were calculated. The membrane potential for CEM-C7 cells was found to significantly decrease in the presence of dexamethasone (9-mV decrease within 18 h of dexamethasone treatment), while that of CEM-ICR27 was found in some samples to increase on dexamethasone incubation. The membrane potential for CEM-C1 decreased slightly, while that of CEM-4R4 was not appreciably affected by dexamethasone. The reduction of membrane potential seems to be an early step in the mechanism of dexamethasone induced apoptosis. Although the intracellular volume varied with cell type and dexamethasone incubation (for CEM-C7), the fractional intracellular volume (alpha = Vin/Vcell) was found to be the same (0.82 +/- 0.06) for all the cell lines in the presence and absence of dexamethasone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call