Abstract

(19)F NMR spectra of two neutral, organic-soluble helical peptide octamers, each labeled at its N terminus with either 4-fluorobenzamide or 4-trifluoromethylbenzamide, in solvents with widely varying dielectric constants have been observed. The peptides are oligomers of alpha-aminoisobutyric acid (Aib), which is a residue known to form stable 3(10) helices in organic solution. In relation to the (19)F NMR spectra of a control molecule, the peptide terminating in 4-fluorobenzamide shows a solvent-dependent downfield chemical shift of between approximately 1.5 and approximately 4 ppm, whilst the peptide terminating in 4-trifluoromethylbenzamide shows only an approximately 0.2 ppm chemical shift dependence on the solvent dielectric constant. The experimental observations were compared to calculated values of the electric field generated by the correlation of dipolar amide units through the peptide's helical conformation. We find the chemical-shift response of the 4-fluorobenzamide group to the peptide's calculated electric field is consistent with the magnitude of (19)F chemical shift dispersion observed in proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.