Abstract
SPRY domain-containing SOCS box protein 2 (SPSB2) regulates inducible nitric oxide synthase (iNOS) by targeting it for proteasomal degradation. Inhibiting this interaction prolongs the intracellular lifetime of iNOS, leading in turn to enhanced killing of infectious pathogens such as bacteria and parasites. SPSB2 recognizes a linear motif (DINNN) in the disordered N-terminus of iNOS, and ligands that target the DINNN binding site on SPSB2 are potentially novel anti-infective agents. We have explored (19)F NMR as a means of probing ligand binding to SPSB2. All six Trp residues in SPSB2 were replaced with 5-fluorotryptophan (5-F-Trp) by utilizing a Trp auxotroph strain of Escherichia coli. The labeled protein was well folded and bound a DINNN-containing peptide with similar affinity to native SPSB2. Six well-resolved 5-F-Trp resonances were observed in the (19)F NMR spectrum and were assigned using site-directed mutagenesis. The (19)F resonance of W207 was significantly perturbed upon binding to DINNN-containing peptides. Other resonances were perturbed to a lesser extent although in a way that was sensitive to the composition of the peptide. Analogues of compounds identified in a fragment screen also perturbed the W207 resonance, confirming their binding to the iNOS peptide-binding site on SPSB2. (19)F NMR promises to be a valuable approach in developing inhibitors that bind to the DINNN binding site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.