Abstract

To combine fluorine 19 ((19)F) magnetic resonance (MR) imaging and golden angle radial acquisition and to assess the feasibility of (19)F MR imaging golden angle-based tracking for catheter tracking applications and simultaneous three-dimensional (3D) intestinal tracking of ingested (19)F-labeled capsules in vivo. Approval from the local ethical committee and informed consent from the subject were obtained. In vitro studies were performed to assess (19)F MR imaging golden angle-based tracking reliability with regard to temporal resolution and different tracking strategies (boundary condition-free tracking, composite image-based tracking, and model-based tracking). In vivo performance of the method was investigated in one healthy volunteer on 2 days. On study day 1, a duodenal catheter incorporating five (19)F-labeled capsules was administered nasally, and its 3D movement was tracked inside the stomach and esophagus. On study day 2, three (19)F-labeled capsules were swallowed, and intestinal movement was tracked. Simultaneous in vivo 3D tracking of multiple (19)F-labeled capsules was successfully performed without incorporation of boundary conditions at a temporal resolution of 252 msec. Incorporation of boundary conditions with composite image-based tracking and model-based tracking increased tracking reliability and enabled temporal resolution as high as 108 msec. Use of (19)F MR imaging golden angle-based capsule tracking enables in vivo tracking of (19)F-labeled capsules and catheters at high temporal resolution. The presented method is applicable to physioanatomic studies of the gastrointestinal tract and shows potential for real-time tracking in interventional radiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.