Abstract

The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3 or calcitriol), is known to inhibit the proliferation and invasiveness of many types of cancer cells, including breast, colon, pancreatic, prostate, and liver cancer cells. These findings support the use of 1α,25(OH)2D3 for the treatment of these types of cancer. However, 1α,25(OH)2D3 can cause hypercalcemia, so analogs of 1α,25(OH)2D3 that are less calcemic but exhibit more potent anti-tumor activity would be good candidates as therapeutic agents. Therefore, a series of 19-norvitamin D analogs, in which the methylidene group on C19 is replaced with 2 hydrogen atoms, have been synthesized by several laboratories. In our laboratory, we have designed and synthesized a series of 2α-functional group substituted 19-norvitamin D3 analogs and examined their anti-proliferative activity. Among them, 2α- and 2β-(3-hydroxypropyl)-1α,25-dihydroxy-19-norvitamin D3 (MART-10 and MART-11) were found to be the most promising. Here, we review the rationale and approaches for the synthesis of different 19-norvitamin D analogs, and the pre-clinical studies using these analogs in breast cancer cells, in particular, we chose MART-10 for its potential application to the prevention and treatment of breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.