Abstract

The space domain is regarded as the only known physical dimension of lightwaves left to be exploited for optical communications. Very recently, much research effort has been devoted to using orbital angular momentum (OAM) spatial modes to increase the transmission capacity in fiber-optic communications. However, long-distance low-crosstalk high-order OAM multiplexing transmission in fiber is quite challenging. Here we design and fabricate a graded-index ring-core fiber to effectively suppress radially high-order modes and greatly separate high-order OAM mode groups. By exploiting high-order OAM mode group multiplexing, together with wavelength-division multiplexing (WDM), i.e., 12.5Gbaud 8-array quadrature amplitude modulation (8-QAM) signals over OAM+4 and OAM+5 modes on 112 WDM channels (224 individual channels), we experimentally demonstrate 8.4Tbit/s data transmission in an 18km OAM fiber with low crosstalk. Multiple-input multiple-output digital signal processing is not required in the experiment because of the large high-order mode group separation of the OAM fiber. The demonstrations may open a door to find more fiber-optic communication and interconnect applications exploiting high-order OAM modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.