Abstract
BackgroundIncreased uptake of 18F-Sodium fluoride (18F-NaF) PET has potential to identify atherosclerotic plaques that are vulnerable to rupture. Whether 18F-NaF PET can evaluate the significance of atherosclerotic plaque in patients with stable coronary artery disease is less clear. We evaluated 18F-NaF PET uptake in coronary arteries in patients without acute coronary artery syndrome to determine the association of 18F-NaF signal uptake with severity of coronary stenosis. Methods and ResultsWe retrospectively identified 114 patients who received both regadenoson stress 82Rb myocardial perfusion PET and 18F-NaF PET study with an average interval of 5 months. Out of this cohort, forty-one patients underwent invasive coronary angiography. In a patient-based analysis, patients with ischemic regadenoson stress 82Rb PET had significantly higher coronary 18F-NaF uptake than patients with normal myocardial perfusion (P < .01). Among the 41 patients who underwent coronary angiography, per-vessel 18F-NaF uptake in both obstructive and nonobstructive coronary arteries was significantly higher than in normal coronary arteries (P < .05) regardless of the severity of coronary calcification. There was poor correlation between calcification and 18F-NaF uptake in coronary arteries (r = 0.41) ConclusionCoronary arterial 18F-NaF uptake is associated with coronary stenosis severity in patients with stable coronary artery disease. 18F-NaF PET studies may be useful for characterizing coronary atherosclerotic plaques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.