Abstract
This study aims to develop and validate a radiomics model based on 18F-fluorodeoxyglucose positron emission tomography-computed tomography ([18F]FDG PET-CT) images to predict pathological complete response (pCR) to neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC). One hundred eighty-five patients receiving neoadjuvant chemoimmunotherapy for NSCLC at 5 centers from January 2019 to December 2022 were included and divided into a training cohort and a validation cohort. Radiomics models were constructed via the least absolute shrinkage and selection operator (LASSO) method. The performances of models were evaluated by the area under the receiver operating characteristic curve (AUC). In addition, genetic analyses were conducted to reveal the underlying biological basis of the radiomics score. After the LASSO process, 9 PET-CT radiomics features were selected for pCR prediction. In the validation cohort, the ability of PET-CT radiomics model to predict pCR was shown to have an AUC of 0.818 (95% confidence interval [CI], 0.711, 0.925), which was better than the PET radiomics model (0.728 [95% CI, 0.610, 0.846]), CT radiomics model (0.732 [95% CI, 0.607, 0.857]), and maximum standard uptake value (0.603 [95% CI, 0.473, 0.733]) (p < 0.05). Moreover, a high radiomics score was related to the upregulation of pathways suppressing tumor proliferation and the infiltration of antitumor immune cell. The proposed PET-CT radiomics model was capable of predicting pCR to neoadjuvant chemoimmunotherapy in NSCLC patients. This study indicated that the generated 18F-fluorodeoxyglucose positron emission tomography-computed tomography radiomics model could predict pathological complete response to neoadjuvant chemoimmunotherapy, implying the potential of our radiomics model to personalize the neoadjuvant chemoimmunotherapy in lung cancer patients. • Recognizing patients potentially benefiting neoadjuvant chemoimmunotherapy is critical for individualized therapy of lung cancer. • [18F]FDG PET-CT radiomics could predict pathological complete response to neoadjuvant immunotherapy in non-small cell lung cancer. • [18F]FDG PET-CT radiomics model could personalize neoadjuvant chemoimmunotherapy in lung cancer patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.